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EXECUTIVE SUMMARY

Stress analysis of composite laminates with open and filled holes is an important issue

due to the broad range of composite bolted joining applications. The inherent difficulty of

the three-dimensional analysis of these structures is due to singular stress behavior near the

laminate edge and ply interfaces. Numerical stress analysis methods such as commercial

FEM are known to produce mesh sensitive results and boundary condition errors in these

regions. This report reflects further development of the combined analytical asymptotic

solutions and B-spline-based numerical approximation to overcome these difficulties. The

method of superposition of a hybrid and displacement approximation, developed in a

previous report and demonstrated for simple laminates with open holes, is extended for

singular full-field stress analysis in multi-interface practical composites under mechanical,

thermal and bearing loading. The displacement approximation is based on polynomial

B-spline functions. This method provides determination of the coefficient of the singular

term along with convergent stress components including the singular regions. Reissner's

variational principle was employed. Uniaxial loading and residual stress calculation were

considered for a quasi-isotropic IM7/5250 [45/90/-45/0], laminate. A convergence study

showed that accurate values of the coefficient of the singular term of the asymptotic stress

expansion could be obtained with coarse out-of-plane and in-plane subdivisions. The

interaction between singular terms on neighboring interfaces was found to be important for

convergence with coarse subdivisions. Converged transverse interlaminar stress components

as a function of distance from the hole edge were shown for all examples. The hybrid

approximation developed for the open-hole problems was extended to rigid fastener hole

problems. A near-singular term of the asymptotic expansion, present in the filled-hole
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problem only, was taken into account in order to obtain a convergent solution with a coarse

spline approximation mesh. A bearing-loaded [45/-45]s laminate was considered, and the

multiplicative factors of the singular stress terms at the hole edge and ply interface were

obtained.
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1. INTRODUCTION

A hybrid approximation model was proposed in [1,2] for singular full-field stress

calculation in laminates with open holes. The model was developed for single interface

laminates under mechanical loading. In the present report this model is extended for stress

analysis in practical laminates with multiple interfaces under thermal and/or mechanical

loading. Another extension reported below considers rigid fastener hole laminates loaded in

bearings.

The model developed is based on Reissner's variational principle and is intended to

reflect the singularities which arise at each interface at the boundary of the hole. Hybrid

approximation functions to be developed have the following characteristics:

(1) They include the asymptotic solution, thus representing the directional

nonuniqueness of the solution. It is only in this manner that one can embed the proper

singular field. The fact that the asymptotic solution results from the three-dimensional

problem by truncating the spatial derivatives in the circumferential direction [3] will be used

to construct hybrid stress functions.

(2) Two independent (B-spline) displacement functions are considered. One is related

to the regular and the other to the singular portion of the stress field. It is undesirable to use

the asymptotic displacement functions in the displacement approximation, since the

calculation of their derivatives in the circumferential direction, required in the variational

formulation, is only possible numerically. It is assumed that the displacements related to the

singular stresses will also be approximated with splines. Thus the approximations of stresses

and displacements are made independently.
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2. PROBLEM STATEMENT

Consider a rectangular N-layer laminate built of orthotropic layers with length L in

the x-direction, width A in the y-direction, and thickness H. Individual ply thicknesses are

hP=z'P'-z""'", where z=z'p' and z=z'p-l are upper and lower surfaces of the p-th ply, respectively.

The origin of the x,y,z coordinate system is in the lower left comer of the plate, as shown in

Figure 1. A circular opening of diameter D with the center at x=xý and Y=Y, is considered.

Uniaxial loading is applied via displacement boundary conditions at the lateral sides (x=O,L):

- ux (0, y, z) = ux (L, y, z) = U0 ,
uy (0, y, z) =uy (L, y, z) =0,

The transverse displacement is not constrained aside from a rigid body constant, and

the respective traction Ti=0 is prescribed. The edge of the opening is part of the traction

prescribed loading boundary ST, so that

a(nin " Ti (Xi ), Xi E S7T,

or mixed boundary conditions in the case of the rigid fastener

Ur =-O, ainj = TL(xi), i # r, xi reST

where tractions T7 are known. Indices ij=1,2,3 correspond to directions x,y,z, or r,O,z,

respectively. The lateral edges y=OA and the surfaces z-O,H also belong to S,. The

constitutive relations in each ply are as follows:

=CP (ek -ajAT)

where CP and aP are elastic moduli and thermal expansion coefficients of the p-th

orthotropic ply, and AT is the temperature change. A cylindrical coordinate system r, Oz with

the origin at (x, y,,O) is introduced.
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Figure 1. Plate with the Ffiled Hole and Coordinate Systems.

x=rcos +xc, y = rsin0 + y cZ=Z.

According to the asymptotic analysis performed in earlier papers [3,4], the stresses in

the vicinity of the hole edge and the interface between the p and p+ 1 plies are thought to be

of the form:

aij = K, (e)77'f- f (V,e)+ bounded function.
A
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The first terms represent the unbounded (O<Re(X)<1) singular stress terms, where il and V

are local coordinates introduced in the cross section O=const (Figure 1.b) according to

equation

7 cosy/ = r - D / 2, 17sinyf = z - z• (2)

The asymptotic solution is normalized similar to [4] so that

Kp (0) = lim[r1'-o',, (D / 2 + 77cosy/, zc),)

The singular term

aij = ?Jý- fi (vi', 0)

is a solution of the asymptotically derived two-dimensional problem and satisfies neither the

three-dimensional equilibrium nor compatibility equations in any finite volume around the

curved boundary. However it does satisfy the traction-free boundary conditions on the hole

edge as well as the interface continuity conditions in the limit 71 -- 0. We shall consider one

singular term at each angular location at each interface at the open-hole edge, with the

extension to an arbitrary number of terms at the same singular point being straightforward.

The displacement components and bounded portion of the stresses will be approximated by

using cubic spline functions, and Reissner's variational principle will be applied in order to

obtain K,(O) and the unknown spline approximation coefficients. The asymptotic solution

near the orthotropic ply interface and the hole edge will be considered next.
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3. ASYMPTOTIC SOLUTION

Consider a region around the hole edge and the interface between plies p and p+l. A

local coordinate system 77, V/ is introduced in the radial cross section 0=const according to

equation (2). In this coordinate system 0: < : • < in the upper ply and - - < V/<50 in the
2 2

lower one. For an arbitrary function F:

dF dF-= AtF. -- = AnF,
dr dz

where
A dF = F 1--F A F= -' "MF . 1 DFc

dn 7"ndlsmI' dr/sin d

In Cartesian coordinates the derivatives can be calculated as

dE sine dE-_•= (cos8)AtF- sn0 O

dx =D/2+r/cos dO(3'
d coO9 dF(3)-O=(sinO)AtF+ cO-d" D/2+i/cosf 00"

If 77 -- 0, then the first terms in the right-hand side of both equations (3) are of the order

F/i7, and the second terms are of order F. Thus for small rz the expressions for derivatives (3)

are truncated by retaining only the first terms, so that:
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-• =dF d= cos = AtFcose,

S___- = •-sine= AtFsinO, rl > 0 (4)t' d dt
{dj= AnF

where the notation ( )o implies truncation by deletion of the 0 derivative. Although these

equations are exact in the limit q -* 0 only, we shall use these derivatives through a finite

volume to construct the hybrid approximation. Under these assumptions the Navier

equations of a given ply will simplify to:

(AA•A, +BAnA,+CAnA) UY =0,
LU•J

where the 3 x 3 matrices AB,C are given in the Appendix and depend upon the elastic

moduli and 0. Note that the thermal expansion coefficients do not enter these equations due

to the assumption of uniform temperature change. The solution of the Navier equations can

be found in the form

u1 =y vF(rj,VfI,e)+Uf(7,V/,6)

where Uf (qVf, 6O) is a particular solution and • vF (?7"L, V,O) is the homogeneous

solution. Nonhomogeneous boundary conditions resulting from nonzero prescribed tractions

or thermal mismatch can be satisfied with a piecewise polynomial particular solution of

appropriate order, provided that the prescribed tractions are smooth and bounded within the

ply though perhaps discontinuous at the interfaces. The thermal expansion strains are not

present for the homogeneous solution and will be determined in a particular solution. We
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shall be interested in the homogeneous solutions vF, which have essentially nonpolynomial

format, and the respective tractions satisfying homogeneous boundary conditions. The

homogeneous solution of the displacement field can be written as [3]:

6
vf = •_,X"kd P(sinfV/ +I.tf cosV)a,

k=1

where the superscript p refers to the ply number. It will be understood that coefficients I.k

and vectors { dki } are constants for each ply; therefore the superscript is subsequently

omitted, unless needed for clarity. The stresses from the homogeneous solution are

where the truncated derivatives are calculated by using expressions (4). The expression for

the stresses may be written in the form
6

a? = ,/qTf-'I yc 'kCP (sin V + yk cos V)A-,
k=1

Coefficients cr', defined in [3], depend upon elastic moduli of the p-th ply. It was

taken into account that the following relationship applies for the differential operators
6

At v, = ,ri7lX• ykdkicLk (sinyf +/.k cosl/)- 1,
k=1

6

A, vi" = A7L7'-I _ykdki (sinyf + .tk c/ /)k-,
k=1

which leads to the following characteristic equation for obtaining ik :

det[Ag+lBg + C] = 0,

where { dki } are eigenvectors of the characteristic matrix:
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dk2]o
[A/./,2+Byk +C o.2

The power X and coefficients W are defined from the boundary conditions of

displacement and traction continuity at the interface between plies p and p+i

Xr-O: vf (r7,O,0) = vP 1 (77,O,0), '• (7,OA) =-cf (77,O,0), i =x, y, z,

and the traction-free open-hole boundary conditions:

o'i+ (77,2,0)= 0, i =r,0, z,
n 2

ar~i(71,- 7,0)= 0, i = r,O,z,
Ti 2

or the rigid fastener frictionless contact conditions:

2 2
Up(7,--,0)- = Orl(7 )=O, i=O,z.

2 2

Nontrivial solutions of the homogeneous boundary value problem exist for discrete

values of ? only. Coefficients y, are obtained to satisfy the interfacial and hole edge

boundary conditions. We shall be interested in the solutions when 0 < Re(,&) < 1. These terms

provide unbounded stresses which dominate the solution for small ql. In the context of the

present work, laminates with more than one interface will be considered, and the singular

asymptotic terms will be used at each interface. For convenience, we will introduce an

analytical continuation of the asymptotic displacements into all plies of the laminate. Thus

we extend the definition of the displacement vector vf and stress components af for the
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asymptotic solution associated with interface z") between plies p and p+i depending upon the

properties of the ply in which V is located'
6

7XYykdP' (sinV/ +y1+1 cosf),) > 0
Vi = , (5)

{71•_ykdP (sinyf +.kf cosV)A,V < 0
k=l

and

• , y-ckq (siny + y4P1 cosVI)' -',Vf >0, q = p + l,..,N
aP = k=1 6,ikIz(q-1) < 17Sin Vf + z~p) < Z (q)

{ •2L? -i•ykCk'q(sinV + yp cosy);-0'I<, O •0, q =1,..,p

(6)

These functions are defined through the entire laminate thickness. The stresses a? are

calculated from strains defined by the truncated derivatives of displacements v? using the

elastic moduli of that ply where the stresses are evaluated. The asymptotic solution obtained

between plies p and p+i will provide a nonzero stress contribution in a large area

surrounding the singular point due to the weak character of singularity %-1~--0.05 (references

[1-4]) between similar orthotropic layers with different fiber orientations for the open hole.

1 Note that we have refrained from using indices on the variables T an V since they always emanate from the

singular point at z=z(P). Also X has been given no subscript as we only use the lowest possible value at z=z(p).
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4. VARIATIONAL FORMULATION

Displacement components are represented as

ui = ui +uý (7)

where the displacements u, satisfy boundary conditions (1). The term u' is associated with

singular stress components and the second term u[ with bounded stress components. The

stresses will be assumed as

ii Vhyb -- (8)

The stresses "hyb and displacements u' are independently assumed. The stresses ar

and displacements u[ are related as follows
ar =Ciqn W~r -- aqA)

0" ijq (uk•t ~tjZ (9)

where cq and a•k are elastic moduli and thermal expansion coefficients of the q-th

orthotropic ply, AT is the temperature change, and

u 1 2x + j) (10)

Reissner's variational principle 3R = 0 is employed, where the functional R is

given by equation

R = Jff (-cI(aij,AT) +aru(fJ) )dV- JT, uds. (11)
V ST

and

D (i•,j , AT) "- a•Sli .- iAT, q}"- {cjiqj1

12



The surface tractions T, in equation (11) are considered in a generalized sense, meaning that

on the portion of the surface S, not belonging to the contact surface between the fastener and

the hole, they are prescribed. On the contact surface these tractions are unknown, and T,

denotes the Lagrangian multiplier introduced to apply the boundary condition ur=O.

Substituting equations (7) and (8) into (11), one obtains after algebraic manipulations and use

of Betti's law:

hybfhyb -w (u, ,O)JIV
Rff[--•(D•ij ,O)+aýYiju`i,j) - W(usi,jp)V

v (12)
+ JWJ u(ry + u-', AT)dV- ffT(ur + ui )ds.

V ST

where

S1c
W(eij,AT) =-C jk(eij -aZqAT)(EkL -an AT)

2

The goal of the formulation is to treat problems when the external tractions Ti and/or the

interfacial tractions cannot be approximated pointwise by using the same shape functions as

the displacement components or their derivatives. Let the functions Xm be the basis functions

for approximation of the displacements u•, and the functions Ym - those for the

displacements u'. Then the following systems of equations will be obtained by taking the

variations with respect to the unknown approximation coefficients

fj [cqk (urkr, - aq AT) + CqUsk,t) ]K m,jdV = JfTiXmdS

v ST

qJ [~(urv :akAT) + aYb j = STJji Y. dS
V S,

Both sets of basis functions Xm and Ym in the present context are of the same piecewise

polynomial nature. Without restricting the generality, one might assume that they are the

13



same. Indeed, one might always redefine the systems of basis functions {Xml and {Yml as

{Xm} U {Ym}. In this case the equations can be rewritten as:

ijJJ C (uk~l) +(Uk, -Ac)IM'jdV = JffTjXmdS
v s, (13a)

q .S hra X , jdV (13b)
flf [CiflU(k,lI)Xmj , fdV =hIbX (3b

v V

Integrating by parts and adding the equations to each other, one obtains

q Ur, + C, +fX- r -AT + )yj)nj ]X.dS=O
V Sr

The first term of the above equation contains the weak form of the equilibrium equations and

the second term - the weak form of the boundary conditions. They are interconnected,

meaning that if the boundary conditions are not satisfied in the weak form,2 then the error in

the equilibrium equations will not vanish even in the weak form, i.e. it will not be orthogonal

to each of the displacement approximation basis functions. In the next section a form of -hryb

will be proposed so that the boundary conditions on the hole edge and the interfacial

continuity conditions will be satisfied. In this case, provided that equations (13a,b) are also

satisfied, the stresses (8) will satisfy the equilibrium equations in the weak sense, even in the

vicinity of the singularities.

2 The error is orthogonal to each of the displacement approximation basis functions.
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5. HYBRID APPROXIMATION

Consider the exact stresses associated with the displacement us in the q-th ply:

s Ci q s

a ii j U- k,l)

The thermal expansion term is not included with the singular displacement portion, since it

was accounted for in (9). The stresses resulting from displacement field us are modified to

include the singular asymptotic stress field (6). We shall calculate the strain field generated

by the truncated derivatives of the displacements, as follows

u<,,> t ,o +tax, o
2u' (U, ' rUi

where a2u J are calculated according to truncated expressions (4). The contribution of the

stresses generated by these strains is given by the asymptotic stress field (6), so that the

hybrid stresses associated with displacements us are

N-1

jjS,_ + I. Ks (0) a s

p=
1

where

si -ck Uk,t)a • (14)

The unknown functions of the hybrid approximation (7) and (8) are the displacements us, u[

and coefficients K,. Practically speaking, we expect the hybrid approximation to be needed

only in the vicinity of the hole edge. Let the volume F be bounded by the hole edge, the top

and bottom surfaces and r=r0: D/2<r0<min(L,A). Inside this region stresses are given by

15



equations (8), and outside this region u' = 0 and o- = a,'. The total displacement must be

continuous at the internal boundary r--r0. It can be satisfied easily if the unknown

displacement approximation functions are the total displacement u, and u' instead of u' and

u'. The stress approximation (8) can be rewritten accordingly:

N-I
Cyii = rgj + 1:KP(09)a -sij (15)

p=I

where

all - Cq(u(,,) -a AT). (16)
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6. GOVERNING EQUATIONS

Taking into account equations (15) and the change to independent displacement

functions ui and u' , equations (13) will attain the following form

JJJ [cijM (u(k,) - AToi )]XKm,jdV = J*JTiXmdS (17)
V S.

N-1J [ Uq ]u m,jidV = ff YKP (O)aEX mJlGdV (18)
r r p=l

where XmJio are based on truncated derivatives (4). Equation (17) follows from (13a) after

substituting (7) and allows one to calculate the total displacement in an independent problem

under the given traction and displacement boundary conditions (1). Several steps have been

undertaken to reduce (13b) to (18). It has been considered that the hybrid approximation is

defined inside F only and that truncated derivatives (4) were used in the hybrid stress

approximation. The spatial derivatives appearing in (18) are also truncated derivatives,

meaning that auxiliary problem (18) is a two-dimensional problem with the 0-coordinate as a

parameter. A substitution

N-1u7 =yK, u:'"
p=1

provides a solution of equation (18) for arbitrary Kp if

J [Ctijkl (k,l)im,jt ] dV= JJd aX mj.,dV , p=l, ... ,N-1, (19)
r r

The displacement boundary conditions on the singular components u"P must exclude rigid

body motion and be consistent with (5), i.e. no surface displacements can be prescribed for

usp on ST r) aF. Equation (19) provides the weak form of the equality of tractions aPn

and Cq•s ,tj n on the portion of aF inside the laminate (r=r0), provided that no surface

17



displacements are prescribed for u["P there. If the distance between this boundary and the

hole edge is chosen sufficiently large, then the resulting traction discontinuity at this

boundary for the stress field (15) may be reduced arbitrarily by increasing the numerical

subdivision for the auxiliary problem. The following boundary conditions, consistent with

(5), were imposed

U (D/2, ZP,0)=us'P(D/2,z = 0, (20)

The stress approximation after the substitution can be rewritten as

N-1

Cr =ai+ XKP(O)(a? -s?) (21)
p=1

where

SP i'q U,,p
"V ijkl (i,j)o

18



7. DETERMINATION OF Kp(0)

The error in boundary conditions near the singularity from (17) is a result of

approximating the directionally nonunique singular stress field by polynomials. The

directional nonuniqueness means that for 77 --* 0, the stresses a• may tend to plus or minus

infinity depending upon V. The polynomial approximation provides unique and finite stress

values at every point of a given ply. The values of the stress intensity factors are obtained to

' N-1

enforce single-valuedness of the nonsingular portion a' - K P (O)s8 + _K q()(a - s) at
q=1 ,
q~p

the singular point. Consider the interface z=z'p' between the p and the p+1-st ply. Let

P1P) (rj) be the interlaminar traction on the interface z=z in the vicinity of the edge

(P.(P) (0)= oo ). Then, at the hole edge six traction boundary conditions have to be

simultaneously satisfied

T3  U ~P.(P)(lUnTi - i n ,"i ()=C ij n i,

Thus one stress component, namely a., will appear in two equations which are

T, = Cr ,(77±7re,+ P(P) 0 (77,o, e)

These equations can only be satisfied if

him IT, - Kp (O)a P (77, -, 0)) = ImotP,. - Kp (O)a• P (7,, 0)]=
77-o 2 -40

A (P), D N D (D, (22)=ariz(Dz 0),O- KP,()s;(Dz(P,) _,Kq(O)tal( •z '),)-sýj(- z qD (,)

2 2' *~~q=1, L'j 2  2
q;p

These equations are necessary conditions to make the polynomial part of the stress tensor

single-valued. It is worth noting that if instead of a comer one has a crack, i.e. nh = -nP
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then we shall have three pairs of single-valuedness conditions, one per each stress component

in the plane normal to the crack. It will require three stress intensity factors: Mode I, II and

Ill. In the case of a hole edge, we have only one interlaminar stress component which

requires the single-valuedness condition: a,,. The criterion for determining K/O) will be

the continuity of the nonsingular part of a,' stress component at the singular points, i.e.

A •CT(--Dz(P),]) =K (O)A sE( Dz(P),o) +

N-I 2(23)+ I• K,(O)ALa (D,z(p),O)- s (D,z(p),O) p p=l 1...,N N-1I

q*p

where A[ ] denotes the difference of the bracketed function between z(-+O and z -0. The

nondiagonal terms in the right side of equation (23) represent the influence of the

singularities of adjacent plies. These terms will become small if the subdivision of the p and

p+l is dense, since the nondiagonal terms contain the difference between the asymptotic

solution and its polynomial approximation away from the singularity. However, for coarse

subdivisions the contribution of the adjacent plies is significant for convergence.
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8. SPLINE APPROXIMATION OF DISPLACEMENT COMPONENTS

The x, y and z displacement components are approximated by using cubic spline

functions in curvilinear coordinates. The total displacement is approximated as:

ui = CiXUT + 3i5uoXET, (24)

where X is a vector of three-dimensional spline approximation basis functions, and U, are the

unknown spline approximation coefficients. The nonsquare matrices C, and constant vector

E are defined so that the approximation (24) is kinematically admissible, i.e. it satisfies

boundary conditions (1) for arbitrary coefficients Uj. Bold type will be used to distinguish

vectors and matrices; superscript T means the transpose operation.

A detailed description of the spline approximation procedure and the properties of

spline functions are given by larve [3]. The three-dimensional spline approximation

functions are defined in curvilinear coordinates. The x,y plane was mapped into a region

defined by p, , where 0:< p <•1 and 0 <5 <27r. The transformation was defined as follows:

x = D2 (P) cos + L" F2 (p)a(O) + xc2 (25)
YD" Fl(p)sin 0 + A. F2 (P)I3l() + yc

Functions F 1 and F2 were defined as

1 l+ ''P, P<! Ph 0O P:5Ph
Fl(P) = (I +•_- ph)(l-P)p)'h -<p <1 F2()= -Ph 'Ph:5P:51

S 1-Ph [ 1-Ph

Coordinate line p=0 describes the contour of the hole, and the coordinate line p=1 describes

the rectangular contour of the plate. Parameter ic defines the size of a near-hole region

D/2 <r < (1 +ic)D/2, which corresponds to 0•< p < Ph, where a simple relationship between the

polar coordinates and the curvilinear coordinates p, ý exists:
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D Drc

r-D- 2 and 0=0. (26)

The width of this region is typically one hole radius, i.e., rcph = 1. Beyond this region a

transition between the circular contour of the opening and the rectangular contour of the plate

is performed. Functions ax(0) and P(O) describing the rectangular contour of the plate

boundary were given by larve [3]. These functions are introduced so that parametric

equations x=a(O)+xc, y=f3(O)+yc describe the rectangular contour of the plate, and 0•50<0')

corresponds to 0<x <Ly=A; •0)<0') corresponds to x=0, 0<y <A; 4(2)< • <043)

corresponds to 0 _x<L, y=0; and 0'3) <__ 027c corresponds to x=L, 0 <y<A.

Sets of one-dimensional cubic spline functions were defined in each coordinate

direction. Subdivisions were introduced through-the-thickness of each ply such that the p-th

ply, which occupies a region z(P) _< z _< z(P-•), is subdivided into np sublayers. A set of

N
N = ,n + 2N +1 basic B-type cubic spline functions jZi(z). with variable defect was

built along the z-coordinate according to a recurrent procedure given by Iarve [3]. These

cubic splines are twice continuously differentiable at all nodal points inside each ply and have

discontinuous first derivatives (the function itself is continuous) at the ply interfaces to

account for interfacial strain discontinuities. This is a necessary condition for traction

continuity at the ply interfaces. Nodal points are also introduced in the p and 0 directions as

follows: 0 = P0 < Pl < .... < PM = 1, 0 = 00 <01 < .... < Ok = 27r. The subdivision of the p

coordinate is nonuniform. The interval size increases in geometric progression beginning at

the hole edge. The region 0!< P < Ph in which the curvilinear transformation is cylindrical is

subdivided into m1 intervals (ml<m), so that Ph = Pm1" Sets of basic cubic spline functions
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{Ri (P -} ' i(D ) along each coordinate are built so that twice continuous derivatives in

each node are provided. Splines along the 0 are periodic at the ends of the interval. The

vector of the three-dimensional spline approximation functions was defined as the tensor

product of three one-dimensional sets of splines:

{X}q = Ri (p)'D j (O•)Z, (z),

q=l+(j-1)N +(i-1)N k, l= .... N ,j=l .... k,i=l ... m+3.
Z Z Z

The components of vector E are equal to 1 or -1 for a component of X that is nonzero

at p=-, 0(1) <<_(2) (x=O) and p=-, 03) <_4<2nt (x=L), respectively. All other components of

the vector E are equal to zero. The boundary matrices are obtained by deleting a number of

rows from the unit matrix. The deleted rows have nonzero scalar product with E.

The region F of the hybrid approximation superposition is inside the region in which

the transformation (25) coincides with (26). The boundary r=-r0 is defined to coincide with

D
the radial coordinate line so that r0 =-D(I + xpm° where m0 < m,. A reduced set of splines2

oi2 +them pwhreirectin.oAneduce"setof sline

in the p -direction k (P)4=+ is defined only over the first mi intervals for the purpose of

efficient solution of the systems of equations for determining u:'P. It is built exactly the

same way as the one over the entire interval. It can be shown that the reduced set is a subset

of the approximation (24).

The approximation of the singular displacements can be written as

uSIP = CFX'UPT  (27)

SI I

where UF (0) are unknown coefficients and
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{XV = RS (p)Z, (z),

q =l+(i-1)N,z

I .. N Ij= .... k,i= 1 ..... m, + 3.

Matrices CP are defined to satisfy boundary conditions (20). The truncated in-plane

derivatives in equation (19) are calculated as:

(O• 2•-Cos ( -- ),"• D p O = "-'sino -3"' - D:

SDic 9p'4
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9. NUMERICAL RESULTS

9.1 Uniaxial Tension of [45/90/-45/0]. Laminate

A [45/90/-45/0], quasi-isotropic IM7/5250-2 laminate was considered, where the

stacking order is from the top to the central plane, reading from left to right, respectively.

The elastic properties of the unidirectional ply were E1 =151 GPa, E2=E3=9.45 GPa,

G12=G13=5.9 GPa, G13=3.26 GPa, v12=v 13=0.32, and v 3,--0.45. The in-plane dimensions of the

plate were L=290 mm, A=76 mm, xr=L/2, yo=A/2, D=12.5 mm and the ply thickness h=1.34

mm.

The average applied stress was calculated as

o =- I aJ•, (L, y,z)dydz (28)

Figure 2 shows the power of singularity calculated for each interface as a function of

the polar angle; it varies for stresses from -0.01 to -0.077 depending on the angle. Two

mesh densities were used for obtaining the coefficient of the singular term under the uniaxial

loading boundary conditions (1). Coarse subdivision was defined as follows.

z-coordinate: 1 sublayer per ply

p-coordinate: m=12, mo=8 ,1Ph = 1, q=1.2.

0-coordinate: 48 equal intervals.

The fine subdivision consisted of:

z-coordinate: 3 nonuniform (1:2:1) sublayers per ply

p-coordinate: m=24, m0=20, P = 1, q=1.2.

0-coordinate: 48 equal intervals.
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Figure 2. Power of Singularity versus Cylindrical Angle at all Interfaces of the [45/90/-45/0].
Laminate.

The coefficient of the singular stress term calculated by using these subdivisions is shown in

Figure 3 at each interface. The values obtained by using equation (23) and the values

calculated by retaining only the diagonal terms on the right-hand side of equation (23) are

compared. For the coarse subdivision the nondiagonal terms are very significant, so that the

values obtained by neglecting them may even be of different sign. For the fine subdivision

the two results are almost identical. Indeed, the magnitudes of the nondiagonal terms are

determined by the accuracy of approximation of the singular stress term by the polynomial

approximation one or more ply thicknesses away from the singularity. The density of the

subdivision through the ply thickness defines this accuracy. The values of the K, K, and K,

obtained with the two subdivisions and taking into account the nondiagonal terms are close

together. Figure 4 shows the characteristics of the singular behavior of the interlaminar shear

stresses, namely:
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Figure 4. Transverse Shear Stress Normalized Singular Term Coefficients at Different
Interfaces for the [45/901-45I0]s Laminate under Uniaxial Loading.
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limrI17'-'C (D / 2 +?1, z'P', 0) = K a P (1,0, 0)

limr7',az,(D / 2+i7, z(, 6) = K aPz (1,0, 0)

where Kp were determined by the fine mesh solution.

Interlaminar stress components at a 0=60.30 cross section, normalized by the average applied

stress (28), will be considered in Figures 5-8. The transverse radial shear component on all

interfaces calculated by using the fine subdivision is shown in Figure 5. Stresses 6r, are

displayed in Figure 5a. At the 0/-45 and -45/90 interfaces, we observe the typical

discontinuity of dur, near the singularity, whereas the interface 90/45 shows relatively

continuous traction up to the singular point. This is in agreement with Figure 4c, showing

very small amplitude of the singular term at the latter interface compared to the two others at

0=60.30. The stresses calculated according to hybrid approximation (21) are shown in Figure

5b. It should be noted that the closest point to the singularity shown in this figure is

r=-D/2+0.002H. The traction discontinuity is practically indistinguishable within the graphic

resolution.

The transverse normal stresses are examined in Figures 6 and 7. The d,, stresses on

all three interfaces are shown in Figures 6a and 6b. The difference between the results

obtained with two subdivisions is clearly observed for (r-D/2)/H<0.6. The values obtained by

using the hybrid approximation are displayed in Figure 7. In this case the two subdivisions

give practically identical results. We observe (Figure 8) a small absolute value of K (60.30)

at the 90/45 interface. This led to an inconclusive CF, trend definition based on equation (17)

as shown in Figure 6a. The hybrid approximation in Figure 7a shows that this interface is in
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Figure 5. Transverse Interlaminar Shear Stress at 0=-60.30.
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Figure 6. Transverse Interlaminar Normal Stress at 0=-60.30 Obtained by Using Displacement
Approximation.
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Figure 8. Transverse Interlaminar Shear Stress at 0=-60.30.
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compression along with the 0/-45 interface. The -45/90 interface exhibits a tensile peel stress

singularity, which is in agreement with Figure 8.

The o'z obtained by using the hybrid approximation with the two subdivisions are

shown in Figure 8 for completeness. The fine and the coarse subdivision provide very close

agreement in the stress values which is indicative of convergence.

9.2 Thermal Stresses in a [45/90/-45/0], Laminate

The same laminate is considered under a uniform temperature change of AT=-1670C.

This temperature drop is used to approximate the residual stresses generated during the

processing cool-down phase. The displacement boundary conditions (1) are modified so that

the edge x=L is released (zero tractions). The coefficients K, K, and K, obtained with the

coarse and fine subdivisions described in the previous section are shown in Figure 9. Some

differences between the coarse and fine mesh analysis results can be seen for low values,

while all the maximum values are practically identical. The values of the coefficients are

positive at all interfaces in all circumferential directions. Therefore, a tensile peel stress is

expected near singularities. Figure 10a shows the transverse normal stresses a"' obtained

with the coarse subdivision based on displacement approximation in the cross section

0=157.80, where the maximum value of K occurs. The stresses are displayed at two

interfaces in the top (solid line) and bottom (dashed line) plies. The normal stresses are

seemingly discontinuous a distance of approximately 0.6H from the hole edge. Figure 10b

shows the same stresses at all interfaces calculated using the hybrid approximation (21). The
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Figure 9. Singular Term Coefficients at Different Interfaces for the [45/90/-45/0], Laminate
under Thermal Loading.

while all the maximum values are practically identical. The values of the coefficients are

positive at all interfaces in all circumferential directions. Therefore, a tensile peel stress is

expected near singularities. Figure 1 Oa shows the transverse normal stresses a u obtained

with the coarse subdivision based on displacement approximation in the cross section

0=157.80, where the maximum value of K occurs. The stresses are displayed at two

interfaces in the top (solid line) and bottom (dashed line) plies. The normal stresses are

seemingly discontinuous a distance of approximately 0.6H from the hole edge. Figure 10b

shows the same stresses at all interfaces calculated using the hybrid approximation (21). The

discontinuities are reduced significantly. It is interesting to point out that the a' stress at the

90/45 interface obtained with coarse subdivision in Figure 10a may appear to have a

tendency towards -oo as one approaches the interface. The hybrid approximation shows a
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Figure 10. Transverse Interlaminar Normal Stress at 0=157.30 Obtained by Using
Displacement Approximation with Coarse Subdivision.
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sharp change of sign very close to the singularity. This trend is picked up by the

approximation using fine subdivision as shown in Figure 11 a. In this case the tractions at the

bottom and top surfaces are continuous starting from 0.2H from the hole edge. The hybrid

approximation (Figure 1 lb) provides traction values with imperceptible discontinuities

everywhere. The hybrid stresses obtained with the two subdivisions, Figures 10b and 1 lb,

are practically the same.

9.3 Bearing Loading of a [451-45]., Laminate

A square [45/-45], plate is considered. The geometric properties are L=A=508 mm,

D=50.8 mm, ply thickness h=5.1 mm, EI=138 GPa, E2=E3=14.5 GPa, G12=G13=G 23=5.9 GPa

and v12=v13=v23 --0.21. The displacement boundary conditions were applied so that

u0fL=0.001. The average applied stress ao was calculated afterwards according to equation

(28) and used to normalize the results. Formulation and solution of the three-dimensional

contact interaction problem based on B-spline displacement approximation is given in

reference [5]. Two subdivisions were used for the convergence study. The 0 coordinate in all

cases was uniformly divided into 48 intervals. The "coarse" subdivision consisted of n,=1-

one sublayer per ply in the z-direction, and a total of m=12 nonuniform intervals for the p

coordinate. The consecutive interval length ratio was q=1.2 starting from the hole edge. The

"fine" subdivision contained ns-4 sublayers per ply thickness and p coordinate: m=24,

q=l.4.

Asymptotic analysis revealed that a real, near-singular, root 1• _.X<1.15 is present at

the filled-hole edge in this problem. The singular (O<X<l) and the near singular, root

1 •X<<1.15 are shown in Figure 12. The singular root of the open-hole solution is also shown
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Figure 12. Roots of the Asymptotic Solution for Stress Distributions near the Filled- and
Open-Hole Edge Singularity for [45/-45] Interface.

for comparison. It must be noted that X=I is also a root; however, the stress field which it

creates is constant and therefore its spline approximation projection will be exactly equal to

it, i.e. aj - sj 0. It was found that at locations 0-45, 135, 225, 315, the singular root

becomes equal to unity as well as the near-singular root. At these locations the singularity

disappears, and, according to the fact that aTi - s i= 0, m = 1,2,3, an instability of determination

of Km is expected. Two roots, %1 :5 1 and 1•_ X3<l. 15, were included into approximation (15)

at each circumferential location 93<0<267 which corresponds to the contact zone.

Collocation points were Po and pl. The multiplicative term K, as a function of 0 obtained

with the two subdivisions is shown in Figure 1,3. The dashed regions surround the 0=135 and

225 locations where the root equality occurs. Outside these regions the results obtained with
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Figure 13. Multiplicative Factor of the Singular Term of the Filled-Hole Asymptotic
Solution in the Bearing Loading Problem for [45/-45], Laminate.

the two subdivisions are very close and indicate convergence. The interlaminar shear stress

arz component is shown in Figure 14 for 0=180 on the interface N'=0 . Dashed lines show the

stresses (16) at the interface calculated from displacements (7) directly using Hooke's law.

The stress values in the upper and lower ply are discontinuous for both subdivisions. The

region of discontinuity shrinks while increasing the subdivision, however, the amplitude of

the discontinuity at the hole edge increases at the same time. A similar effect at the open-

hole edge was explained due to directional nonuniqueness of the asymptotic behavior [2].

The hybrid approximation (15) provides traction continuity and converged stresses even for

the coarse subdivision, as shown by solid lines. Chaotic behavior of the multiplicative factor

K, near 0=135 and 225 has been anticipated. However, the stress behavior at these locations
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Figure 14. Interlaminar Transverse Shear Stress in the 6=1800 Cross Section in the Bearing
Loading Problem for [45/-45], Laminate.

is expected to exhibit convergence since the singularity disappears. Figure 15 displays the

same as the previous figure at 0=135. Only the stress values calculated from displacements

(7) directly are shown. The traction discontinuity observed for the coarse subdivision is an

order of magnitude lower thanat 0=180. It can be also seen that the fine subdivision

provides traction continuity at the hole edge, thus manifesting absence of the singularity. It

should be noted that further development is required to describe the behavior of the

multiplicative factor K1 in the regions where the singularity impairs.
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10. CONCLUSIONS

1. The method of superposition of hybrid and displacement approximations was extended to

provide accurate stress fields in the vicinity of the ply interface and the hole in practical

laminates with multiple interfaces. The asymptotic analysis was used to derive the hybrid

stress functions. The displacement approximation was based on polynomial B-spline

functions.

2. The coefficients of the singular terms in stress solution near the ply interfaces and the

open-hole edge were determined in quasi-isotropic [45/90/-45/0], laminates under

mechanical and thermal loading. Convergence studies showed that accurate values of the

coefficients of the singular terms can be obtained with the coarse out-of- plane

subdivision of one sublayer per ply. It was shown that for laminates with multiple

interfaces, the influence of singular terms on adjacent interfaces is important for coarse

subdivision convergence.

3. Coefficients of the singular term of the asymptotic expansion were determined for

[45/-45], laminate under bearing loading introduced through a rigid fastener.
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APPENDIX

A( sin2)., A12 = Q)cos20 + (Q1s2+Q6)sin0 cos0 + 2sin2o0,Sc20 + Q( sin20 + Q s 2 (s) sA22 = Q 6cos20 + Q(26sin20 + (2•sin20, A33 = Q55cos 20 + Q(si + 20,

A2 1 =A 12 , A3 1 =A1 3 =A3 2 =A2 3 =0,

Bs) ( ,s, .- ,osO + ( --3 +QO4)sin0, B32 = (O3 (+QO.)cos0 + (,+S)+ sn,
B31 = (Q13+Q5o0 Q3(s 4 (s) 5s Q•3+ W)sin0'

B21 =B12=Bll =B22=B33 =0, B13 =B31,B 2 3 =B32,

c(S) ,-(S) (S) (S)ClI = %55, C12 = %4, C2 2 = , C33 = ),

C21 =C12 , C 3 1 =Cl1=C32 =C23=0 •

Ply stiffness coefficients QOs) s=-,..,N are contracted notations of the fourth-order

tensor C-j, used in the text.
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